No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community

نویسندگان

  • Allanah J. Paul
  • Eric P. Achterberg
  • Lennart T. Bach
  • Tim Boxhammer
  • Jan Czerny
  • Mathias Haunost
  • Kai-Georg Schulz
  • Annegret Stuhr
  • Ulf Riebesell
چکیده

Nitrogen fixation by filamentous cyanobacteria supplies significant amounts of new nitrogen (N) to the Baltic Sea. This balances N loss processes such as denitrification and anammox, and forms an important N source supporting primary and secondary production in N-limited postspring bloom plankton communities. Laboratory studies suggest that filamentous diazotrophic cyanobacteria growth and N2-fixation rates are sensitive to ocean acidification, with potential implications for new N supply to the Baltic Sea. In this study, our aim was to assess the effect of ocean acidification on diazotroph growth and activity as well as the contribution of diazotrophically fixed N to N supply in a natural plankton assemblage. We enclosed a natural plankton community in a summer season in the Baltic Sea near the entrance to the Gulf of Finland in six large-scale mesocosms (volume ∼ 55 m3) and manipulated fCO2 over a range relevant for projected ocean acidification by the end of this century (average treatment fCO2: 365–1231 μatm). The direct response of diazotroph growth and activity was followed in the mesocosms over a 47 day study period during N-limited growth in the summer plankton community. Diazotrophic filamentous cyanobacteria abundance throughout the study period and N2-fixation rates (determined only until day 21 due to subsequent use of contaminated commercial N-N2 gas stocks) remained low. Thus estimated new N inputs from diazotrophy were too low to relieve N limitation and stimulate a summer phytoplankton bloom. Instead, regeneration of organic N sources likely sustained growth in the plankton community. We could not detect significant CO2-related differences in neither inorganic nor organic N pool sizes, or particulate matter N : P stoichiometry. Additionally, no significant effect of elevated CO2 on diazotroph activity was observed. Therefore, ocean acidification had no observable impact on N cycling or biogeochemistry in this N-limited, post-spring bloom plankton assemblage in the Baltic Sea.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of nitrogen-fixing cyanobacteria in a Baltic Sea plankton community by land-derived organic matter or iron addition

In the Baltic Sea, floating blooms of nitrogen-fixing cyanobacteria occur yearly during late summer. These blooms can sometimes be limited by iron. Due to extensive foresting around the Baltic Sea, iron is entering the Baltic Sea partly bound to dissolved organic material (DOM) via rivers. An experiment was performed in 300 l laboratory mesocosms to test the hypothesis that riverine highmolecul...

متن کامل

Diversity of ocean acidification effects on marine N2 fixers

a r t i c l e i n f o Considering the important role of N 2 fixation for primary productivity and CO 2 sequestration, it is crucial to assess the response of diazotrophs to ocean acidification. Previous studies on the genus Trichodesmium suggested a strong sensitivity towards ocean acidification. In view of the large functional diversity in N 2 fixers, the objective of this study was to improve...

متن کامل

Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects

Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes-summarized by the term ocean acidification (OA)-can significantly affect the physiology of planktonic organisms...

متن کامل

Diversity of Pico- to Mesoplankton along the 2000 km Salinity Gradient of the Baltic Sea

Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibilit...

متن کامل

Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community

Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016